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The capillary boundary layer for standing waves 

By JOHN MILES 
Institute of Geophysics and Planetary Physics, University of California, San Diego, 

LA Jolla, CA 92093, USA 

(Received 16 April 1990) 

The linear, free-surface oscillations of an inviscid fluid in a cylindrical basin subject 
to the contact-line condition cn . Vy = Q ( 6  is the free-surface displacement and c is 
a complex constant) are determined through a boundary-layer approximation for 
l/a < 1 ,  where a is a characteristic length of the cross-section and 1 is the capillary 
length. The primary result is w2 = w i [ l +  (l/a) S(& ; c /w,  l ) ] ,  where w is the frequency 
of a free oscillation, w, is the natural frequency for a particular normal mode, 6 = 
6,  in the limit l/a+O, and 9 ( c n ; c / w , Z )  is a corresponding form factor. The 
imaginary part of S is positive (for the complex time dependence exp (iwt)) if Re (c) 
> 0, which implies positive dissipation through contact-line motion. Explicit results 
are derived for circular and rectangular cylinders and compared with Graham- 
Eagle’s (1983) results for the circular cylinder for c = 0 and Hocking’s (1987) results 
for the two-dimensional problem. The exact eigenvalue equation for the circular 
cylinder and a variational approximation for an arbitrary cross-section are derived 
on the assumption that the static meniscus is negligible. 

1. Introduction 

section S ,  lateral boundary L, and uniform depth h is described by 
The linear eigenvalue problem for inviscid gravity waves in a cylinder of cross- 

V2$ = O  (x in S, -h  < z < O ) ,  (1 .1)  
n . V $ = O  on L,  $ , = O  on z=-h ,  (1.2a,. b )  

4z = iwy, io$+gc = TV2c ( z  = 0 ) ,  (1.3a, b )  

where $ and 6 are the complex amplitudes of the velocity potential and free-surface 
displacement, both of which contain the implicit factor exp (iwt), n is the inwardly 
directed normal to L, T = surface tension/density, and the frequency w is to be 
determined. 

If T = 0 the problem is well posed without the prior specification of a boundary 
condition for 6 on L, the substitution 

reduces (1.1)-( 1.3a) to the classical eigenvalue problem (Lamb 1932, $257). 

V 2 [ + k 2 c = 0  in S ,  n - V c = O  on L,  (1.5a, b)  

and (1.3 b )  then yields the gravity-wave dispersion relation w2 = gk tanh kh. But if 
T > 0 the boundary condition on 6 generally differs from ( 1 . 5 b ) ;  following Hocking 
(1987), I assume 

cn - V( = iwc on L, (1.6) 
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where c is a velocity that Hocking assumes to be real but I assume to be complex 
(since V c  need not be in phase with iwc). The essential parameters of the problem 
then are 

C 
~ ~ k l ,  y ~ -  

wl ’ 
(1.7a, b) 

where k is an eigenvalue of (1.1)-(1.3) and (1.6), and 

1 = (T/g)i (1.8) 
is the capillary length. The requirement that the damping associated with contact- 
line motion be positive implies Re ( y )  > 0. 

Experimental determinations of y do not appear to  be available, while theoretical 
considerations (Miles 1990) suggest that IyI < 1,  for harmonic motion. Benjamin & 
Scott (1979) have proposed and experimentally confirmed that y = 0 for waves in a 
brim-full container ; however, observation suggests that contact-line motion 
contributes significantly to the damping of standing waves a t  a protuding wall. This 
motion may be nonlinear, but that can be determined only by experiment. The 
present analysis, in which (1.6) may be regarded as the most general phenom- 
enological hypothesis that is compatible with linearity and the dynamical boundary 
condition (1.3b), is directed towards such experiments and towards a better 
understanding of the damping of waves in closed containers, which typically exceeds 
that inferred from viscous boundary-layer calculations (Miles 1967). 

The problem posed by (1.1)-(  1.3) and (1.6) for y = 0 (5  = 0 on L )  is considered by 
Benjamin & Scott (1979), who are concerned primarily with waves propagating along 
a rectangular channel but give a variational formulation for standing waves, and by 
Graham-Eagle (1983), who obtains explicit results for a circular cylinder. The two- 
dimensional problem is solved by Hocking (1987) for y > 0, but his analytical results 
are valid for complex y.  All of these solutions neglect the static meniscus, although 
Benjamin & Scott consider the meniscus in an appendix. 

I attack the eigenvalue problem posed by (1 .1  )-( 1.3) and (1.6) on the assumption 
that K < 1 .  This restriction justifies the neglect of the static meniscus, the inclusion 
of which would require that (Miles 1990) : (i) the free-surface boundary conditions 
(1.3) be imposed at the meniscus, z = z,(x), rather than z = 0;  (ii) V z ,  - V$ be added 
to the right-hand side of ( 1 . 3 ~ ) ;  (iii) V2c be replaced by V - (pVg) in (1.3 b), where 
p = p(Vz,). The error factor associated with this neglect is 1 + O(K) .  

The restriction K < 1 also suggests that the effects of the contact-line condition 
(1.6), vis-a-vis (1.5 b) ,  are confined to a capillary boundary layer of characteristic 
thickness 1. This hypothesis is supported by the remark that (1.3 b),  qua differential 
equation for 5 in which the hydrodynamic pressure iw$ (after factoring out the 
density) acts as the forcing function, admits a complementary solution that decays 
away from the wall with an e-folding length 1. I carry out the boundary-layer 
analysis in $2 to obtain 

where 9, = O(K)  is a form factor (see (2.12)), and w, is the natural frequency for a 
particular eigensolution of (1.5) in the limit K J O .  The viscous correction to w 2 - w i  
may be superimposed on (1.9) provided that both K < 1 and kl, < 1, where I ,  = 
(2v/w)+ is the thickness of the viscous boundary layer. 

The error factor 1 +O(K)  implied by the neglect of the meniscus in the present 
formulation suggests that there may be little profit in improving the boundary-layer 
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approximation (1.9). However, it appears from an analysis of the corresponding 
problem for an oscillating plate (Miles 1990) that the meniscus correction may be 
numerically small, and I therefore carry out an integral-equation formulation of the 
boundary-value problem in 93 without the restriction K < 1. This formulation yields 
the exact eigenvalue equation for a circular cylinder (or for any other cross-section 
for which L is a level surface in coordinates for which (1.5) is separable) and leads to 
a generalization of the variational formulation of Benjamin & Scott (1979) for y = 
0 to arbitrary y, which I develop in Appendix A; however, its primary value in the 
present context is the provision of error estimates for the boundary-layer 
approximation. 

I consider, as examples, circular and rectangular cylinders in 994 and 5. The 
approximation (1.9) is within 6% of Graham-Eagle's (1983) numerical results for 
y = 0 and l / a  < 0.4 for the dominant axisymmetric mode in a circular cylinder of 
radius a ;  i t  is within 10 % of the corresponding result for the dominant antisymmetric 
mode for l / a  < 0.2. These comparisons provide confidence in the boundary-layer 
approximation for K < 1, but only experiment can provide a check on the predicted 
effects of y ,  including, in particular, contact-line damping. 

2. Boundary-layer approximation 
We pose the solution of (1.1) and (1.2a, b)  in the form 

where {cn(x);k,} is a complete, orthogonal set of eigenfunctions of (1.5). The index 
n is, in general, an abbreviation for a pair of indices, and the summation in (2.1) then 
is over a doubly infinite, discrete spectrum - e.g. Cmn = cos (mmla )  cos (nxy lb)  for a 
rectangle. 

Substituting (2.1) into (1.3b), we obtain 

LYC = TV2[-gc = i w x A n  &(x), (2.2) 
n 

a particular solution of which is given by (recall that  V26, = - ki 6,) 

(2.3a, b )  

The contact-line condition (1.6) requires &, to be complemented by a solution of 
LYC = 0 that, by hypothesis, is significant only in a boundary layer of characteristic 
thickness 1 on L.  .Let (x,y) be boundary-layer coordinates that are (normal, 
tangential) to L and for which the characteristic lengths are (1, Z / K ) ,  where 1 = (T/g)i  
is the capillary length ; then 

(2.4) 
and the complementary solution of (2.2) has the form 

where f is an arbitrary function that is slowly varying relative to exp ( -  z/l) ,  and, 
here and subsequently, error factors of 1 + O ( K ~ )  are implicit. We determine f by 
requiring C p  + Q to satisfy (1.6) and invoking 5, = g ,  ( y )  and n Vc, = 0 on L.  The 
end result for c, after introducing y = c/wl ,  is 

Q = e-"'lf(y), (2 .5)  
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Combining (2.1) and (2.6) in (1.3a) and eliminating A ,  through (2.3b), we obtain 

C B , [ ( w z - w 2 , )  Cn(x) - (1 -iy)-I wzee-z'L6,(g)] = 0, 

w 2  , = - (gk, + Tk3,) tanh k, h. 

(2.7) 

(2.8) where 

Multiplying (2.7) through by c,(x), integrating over S ,  and invoking the 
orthogonality of the 6,  and the approximation [which follows from C,(x) = 
[ , ( ~ ) + O ( K ~ )  for x = O ( l ) ]  

n 

we obtain the infinite set of linear equations 

[ C m n l  [ B n I =  0, (2 .104  

c,, = ~ , , ( w z - w i )  c~,~s-(I  -iy)-lwzlJ[mcn d ~ ,  (2.10b) JJ where 

S,, is the Kronecker delta, and dL = dy.  

JC,,J = 0 are given by? 
It follows from (2.9) and (2.10b) that the roots of the determinantal equation 

+ O ( K 2 ) ,  (2.11) 
w2-w; - 

w i  l-iy 

where F, e = O ( K )  

is a form factor for C,(x). 

(2.12) 

3. Integral-equation formulation 
We define the finite-Fourier transform and its inverse corresponding to {cw(x)  ; k,} 

Fourier-transforming ( l . l ) ,  (1.2b) and (1.3a, b )  with the aid of Green's theorem, 

where n is the inwardly directed normal to L ,  and invoking (1.2a) and (1.6), we obtain 

V z @ , - k ; @ ,  = 0 (-h < z < 0 ) ,  (3.3) 

Q n Z = O  ( ~ = - h ) ,  (3.4) 

(3.5a, b )  @nz = iwZ,, iw@, + ( g  + T k i )  2, = -- iw"scc,dL (2 = O ) ,  
C 

where @, and 2, are the transforms of q5 and 5. The solution of (3.3)-(3.5) is given 

t A consideration of the next approximation implies that O ( K ~ )  comprises O(K* In K )  in (2.1 1 ). See 
e.g.  $5.2. 
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where w: is given by (2.8). Inverting (3.6b) through (3.1 b) ,  invoking wT/c = gl/y and 
I& = [,(y) on L,  and choosing x on L,  we obtain the integral equation 

for the determination of 6 on L,  where 

(3.8a, b) 

We remark that (3.7) reduces to an  exact eigenvalue equation if L is a level surface 
in a coordinate system for which (1.5) is separable; see e.g. $4.2. 

4. Circular cylinder 

The normal modes for a circular cylinder of radius a are given by 

6, = J,(k,, r )  cosm0, 

4.1. Boundary-layer approximation 

J,(k,, a )  = 0, (4.1 a, b )  

where J, is a Bessel function, r and 0 are polar coordinates, m and n are integers, 
and cosm0 may be replaced by any linear combination of cosm0 and sinmB. 
Substituting ( 4 . 1 ~ )  into (2.12), we obtain 

2kk, a1 
F m n  = kL,a2-m2' (4.2) 

We consider as examples the axisymmetric and dominant antisymmetric (kll a = 
1.841) modes, for which (2.11) and (4.2) yield 

(4.3a-c) 

These approximations are compared with Graham-Eagle's (1983) results for y = 0 in 
table 1.  

4.2. Exact eigenvalue equation 

Combining (3.8) and ( 4 . 1 ~ )  in the integral equation (3.7) and positing 

5 = c,(~) cosme, (4.4) 

we find that [,(a) may be cancelled t o  obtain the exact eigenvalue equation 

F,,,, k,, tanh k,, h 
+iy = 0. 

g: wz-w;,  (4.5) 

We recover the boundary-layer approximation by separating the term with the 
smallest denominator in (4.5), summing the remaining terms through the Euler- 
summation formula, and letting E/a J. 0. We recover Graham-Eagle's (1983) results by 
letting y = 0, tanh k,, h = 1, and m = 0 or 1 in (4.5). It may be inferred from (4.5) 
that (4.3alb) over/under-estimates w in this limiting ( y  + 0, kh + C O )  case. 
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w 2 / 4 n  u2/w:1 
l la  ( 4 . 3 ~ )  w2/u: ,  w2/w:, w2 /o :3  w2//w:, (4.3b) 

0.100 1.200 1.200 1.201 1.190 1.303 1.284 
0.224 1.45 1.48 1.37 1.29 1.83 1.64 
0.316 1.63 1.63 1.43 1.31 2.30 1.90 
0.447 1.89 1.77 1.46 1.32 2.95 2.27 

TABLE 1. Frequency ratio w2/wkn for circular cylinder, as calculated by Graham-Eagle (1983) and 
from the boundary-layer approximation (4.3) for y = 0. 

5. Rectangular cylinder 
5.1. Boundary-layer approximation 

The normal modes for a rectangular cylinder with walls a t  x = 0, a and y = 0, b are 
given by 

c,, = cos (7) cos r:), kkn  = c)1+ ey, (5 . la ,  b)  

where m and n are integers and coo is excluded by conservation of mass. Substituting 
( 5 . 1 ~ )  into (2.12), we obtain 

The corresponding variational approximation is derived in Appendix A. 
The two-dimensional result follows from the limit b 1‘ co (which is not equivalent 

to n = 0 in the present context). Substituting F, = 41/a from (5.2) into (2.11), we 
obtain (cf. (4.3)) 

02-w;  2h 21 -- -- A = - .  
w& 1-iy’ a 

5.2. Exact two-dimensional eigenvalue equation 
The exact eigenvalue problem for the two-dimensional problem, for which 

cm = COS(--), mxx k ,  = - mn (m = 1,2 ,  ...), 
a 

may be derived as in $4.2 and is given by (cf. (4.5)) 

4gl k, tanh k ,  h --c +iy = 0, 
a , w a - w k  

where m is summed over either the even or the odd integers. 
Letting tanh k, h = 1 in (5.5) and introducing m through the identity 

- w2 m(1 + ~ : m ~ ) ,  K~ k , l ,  

9kl 

(5.3a, b )  

(5.4a, b)  

(5.5) 

(5.6a, b)  

where (by definition) m+m as K~ + O ,  we reduce (5.5) to Hocking’s (1987) result for 
the deep-water problem in the form (after allowing for differences in notation) 

M ( m )  +$xy = 0, (5.7) 
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where 
n 

( m - n )  , I +  K : ( m 2  + mn+ n2)1 
. (5.8) 

This series is summed in Appendix B. Invoking (B 8) and letting m = 1, we obtain 

- n 
m(1 + K ; r n 2 )  - n ( i  + ,c; n2) 

M ( m )  = .,c - 

the second approximation 

0 2  - w2 1- - 
4 

where y = 0.5772.. . is Euler's 
A = 0.1. 

2A 
1 - iy - A  [In (d) + % - y ]  + O(A2) ' 

constant. The square-bracketed quantity is 0.765 for 

(5.9) 
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Appendix A. 
Multiplying 

we obtain the 

Variational approximation 
the integral equation (3.7) through by c(x) and integrating around L, 
quadratic form 

r r  r 

which is stationary with respect to first-order variations of I&) about the true 
solution(s) of (3.7). 

Substituting the trial function c = c,, into (A 1 )  and separating the corresponding 
term from the Green's function (3.8) on the hypothesis that w2-wf = O ( K O ~ ) ,  we 
obtain 

where w, and Sn are defined by (2.8) and (2.12), 

and the prime implies the omission of m = n from the summation. We emphasize that 
S ,  depends on w through Q,, in consequence of which (A 2) does not determine w 
explicitly ; however, it  appears that an iterative solution, starting from w = w,, 
should converge quite rapidly. 

Considering, for example, the dominant mode in a rectangular tank, for which 
a > b,  m = 1, n = 0, and Cmn and Fl0 are given by (5.1) and (5.2), we obtain 

where Q,, and k,, are given by (3 .8b )  and (5 . lb ) .  
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Appendix B. Summation of M ( m )  
A partial-fraction expansion of the series (5.8) yields 

and n is summed over either the odd or the even integers. Invoking the recurrence 
formula (Abramowitz & Stegun 1964, $5.3), 

1 1  1 
z z + l  z+n’ $(n+ 1 + z )  = $(z) +-+-+ . . . +- 

where +(z)  is the logarithmic derivative of the gamma function, and the reflection 
formula (Abramowitz & Stegun 1964, $5.3) 

+( l - z )  = $(z)+KCOtKZ, 
we obtain 

wherein n is summed over the odd (even) integers, N is odd (even), v = 1(0), and 
6 E P / K ~ .  Substituting (B 5) and (B 6) into (B 1)  and 1ettingNf co (in which limit the 
contributions of the N-dependent $-functions cancel), we obtain 

M =  ( - ;3K2) {+$h(l+ +z -8.) + fK cot [ + X ( m -  v)]] 

We now let K --f 0 ,  so that m tends to an integer m that  has t’he same parity as the 
summation index n in (B l ) ,  to  obtain 

where (as above) v = l(0) for m odd (even). 
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